光聚合紫外燈LUYOR-3405A 在光聚合復(fù)合材料中應(yīng)用
摘要
2024 年,澳大利亞國(guó)立大學(xué)、中國(guó)科學(xué)院上海硅酸鹽研究所等團(tuán)隊(duì)在《Advanced Materials》(IF=27.4,中科院一區(qū) Top 期刊)發(fā)表研究,提到 LUYOR-3405A 燈是光聚合實(shí)驗(yàn)的核心工具,能高效驅(qū)動(dòng)表面改性納米填料與聚合物的原位聚合,為高性能聚合物納米復(fù)合材料制備提供重要技術(shù)支持,還幫著弄清了填料表面改性和材料性能優(yōu)化的關(guān)鍵機(jī)制。
澳大利亞國(guó)立大學(xué)聯(lián)合研究團(tuán)隊(duì)長(zhǎng)期研究光聚合技術(shù)、納米材料表面改性和先進(jìn)復(fù)合材料,聚焦綠色制造、材料性能提升等需求,在傳感器、生物醫(yī)用材料、3D 打印材料等領(lǐng)域有不少成果。光聚合反應(yīng)快、條件溫和,是做聚合物復(fù)合材料的好方法,但納米填料在聚合物里不好分散、結(jié)合不夠好一直是難題。這次研究通過改性納米填料(比如氧化石墨烯、二氧化硅、生物基納米材料),再用 光聚合紫外燈LUYOR-3405A燈精準(zhǔn)發(fā)光激發(fā),讓填料和聚合物高效聚合,大幅提升了復(fù)合材料的機(jī)械、光學(xué)、電學(xué)性能,為批量生產(chǎn)高性能材料打下好基礎(chǔ)。
實(shí)驗(yàn)中,光聚合紫外燈LUYOR-3405A全程發(fā)揮關(guān)鍵作用。制備硫醇改性氧化石墨烯時(shí),它發(fā)出 365 nm 紫外線,驅(qū)動(dòng)材料和聚乙二醇二丙烯酸酯聚合,做出的水凝膠吸附染料效果很好;給二氧化硅納米粒子接枝光引發(fā)劑后,用它調(diào)控聚合過程,復(fù)合材料的彎曲模量從 43 MPa 漲到 286 MPa,光引發(fā)劑也不容易遷移;改性纖維素、殼聚糖等生物基材料時(shí),它提供穩(wěn)定紫外光,讓材料和聚合物高效結(jié)合,做出的復(fù)合材料能用于 3D 打印、生物醫(yī)療;在鈣鈦礦、MOFs 等材料的聚合實(shí)驗(yàn)中,它能精準(zhǔn)控制照射強(qiáng)度和時(shí)間,保證反應(yīng)均勻高效,讓復(fù)合材料在光電探測(cè)、氣體分離等領(lǐng)域有用武之地。
光聚合紫外燈LUYOR-3405A是專門用于光聚合、轉(zhuǎn)基因篩選的激發(fā)光源,優(yōu)勢(shì)很突出。365 nm 核心波長(zhǎng)能激活各種光引發(fā)劑,適配不同類型聚合反應(yīng);發(fā)光穩(wěn)定、功率足,大面積樣品也能聚合均勻,實(shí)驗(yàn)結(jié)果更可靠;操作方便,能長(zhǎng)時(shí)間連續(xù)工作,不管是小規(guī)模精準(zhǔn)實(shí)驗(yàn)還是中批量樣品制備都能用,大大提高實(shí)驗(yàn)效率;兼容性強(qiáng),能匹配各類聚合體系和熒光檢測(cè)場(chǎng)景,是材料科學(xué)、化學(xué)、生物等領(lǐng)域的常用工具,已經(jīng)幫著發(fā)表了近千篇高水平論文。
原文相關(guān)段落:Graphene oxides (GOs) were chemically modified with thiols (GO-SH) and subsequently underwent photopolymerization with PEGDA using a LUYOR-3405 UV lamp emitting at 365 nm. The incorporation of increasing amounts of GO-SH resulted in the GO-SH/PEG composite hydrogels having larger pore volumes and average pore diameters compared to the unmodified PEG hydrogels. The efficiency of these composite hydrogels in adsorbing three organic dyes, Congo red (CR), Rhodamine B (RhB), and methylene blue (MB), was thoroughly assessed. Hydrogels with higher GO-SH concentrations exhibited superior dye adsorption capabilities.
Surface modification of nanofillers is a key strategy to promote favorable filler–polymer interactions and compatibilize the interface to enhance dispersion. Various surface modification techniques, such as grafting, silanization, and the attachment of functional groups, have been employed to tailor the surface properties of nanofillers and promote their integration into the polymer matrix during photopolymerization. The incorporation of surface-modified nanofillers into polymer composites via photopolymerization, driven by tools like LUYOR-3405 UV lamp, offers several advantages, including rapid and efficient processing, spatial and temporal control over the polymerization reaction, and the ability to create complex structures.
The presence of photoinitiators or photosensitizers on the surface of modified nanofillers allows them to participate directly in the photopolymerization process initiated by LUYOR-3405 UV lamp, leading to the formation of strong covalent bonds between the nanofillers and the polymer matrix. This enhanced interaction results in improved stress transfer, increased mechanical strength, and better overall performance of the nanocomposites.
DOI: 10.1002/adma.202400178
© 2025 版權(quán)所有:上海路陽儀器有限公司 備案號(hào):滬ICP備10002130號(hào)-7 總訪問量:306876 站點(diǎn)地圖 技術(shù)支持:化工儀器網(wǎng) 管理登陸